
算法设计与分析
Lecture 2: Asymptotic Notation

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

Asymptotic Notation

¡ Intuitively, just look at the dominant term.
𝑇 𝑛 = 0.1𝑛! + 10𝑛" + 5𝑛 + 25

¡ Drop lower-order terms 10𝑛! + 5n + 25.

¡ Ignore constant 0.1.

¡ But we can’t say that 𝑇 𝑛 equals to 𝑛!.
¡ It grows like 𝑛". But it doesn’t equal to 𝑛".

¡ We define asymptotic notations (渐进符号) like 𝑇 𝑛 = Θ(𝑛!)
to describe the asymptotic running time of an algorithm.
¡ “Asymptotic” here means “as something tends to infinity”, as we want to

compare algorithms for very large 𝑛.

1

Logarithm Review

Definition

log# 𝑎 is the unique number 𝑐 s.t.
𝑏$ = 𝑎.

¡ Notations:
¡ lg 𝑛 = log! 𝑛 (binary logarithm)

¡ ln𝑛 = log" 𝑛 (natural logarithm)

¡ lg# 𝑛 = lg 𝑛 # (exponentiation)

¡ lg lg 𝑛 = lg(lg 𝑛) (composition)

¡ Derivative:

¡
$ %&'! (

$(
=)

(%* +

¡ Useful identities for all real 𝑎 > 0,
𝑏 > 0, 𝑐 > 0, and 𝑛, and where
logarithm bases are not 1：
¡ log,(𝑎𝑏) = log, 𝑎 + log- 𝑏

¡ log. 𝑎/ = 𝑛log. 𝑎

¡ log.
)
+
= − log. 𝑎

¡ log. 𝑎 = log+ 𝑏 0)

¡ 𝑎%&'" , = 𝑐%&'" +

¡ log. 𝑎 =
%&'# +
%&'# .

¡ 𝑎 = 𝑏%&'" +

2

Big O Notation

Definition 2.2

For a given complexity function 𝑔(𝑛), 𝑂 𝑔 𝑛 is the set of complexity
functions 𝑓 𝑛 for which there exists some positive real constant 𝑐 and
some nonnegative integer 𝑛! such that for all 𝑛 ≥ 𝑛!,

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛).

¡ 𝑂 𝑔 𝑛 is a set of functions in terms of 𝑔 𝑛 that satisfy the
definition.

¡ If 𝑓 𝑛 = 𝑂 𝑔 𝑛 , it represents that 𝑓(𝑛) is an element in 𝑂 𝑔 𝑛 .
We say that 𝑓 𝑛 is “big O (大O)” of 𝑔 𝑛 .
¡ Strictly, we should use “∈” instead of “=”. However, it is conventional to use
“=” for asymptotic notations.

3

Big O Notation

¡ No matter how large
𝑓 𝑛 is, it will
eventually be smaller
than 𝑐𝑔 𝑛 for some
𝑐 and some 𝑛#.

¡ Big O notation
describes an upper
bound. We use it to
bound the worst-
case running time of
an algorithm on
arbitrary inputs.

4

𝑓 𝑛 = 𝑂(𝑔(𝑛))
𝑐𝑔(𝑛)

𝑓(𝑛)

𝑛! 𝑛

Image source:图2.2,张德富, 算法设计与分析, 国防工业出版社, 2009.

Display of Growth of Functions

5

Image source: http://bigocheatsheet.com/img/big-o-complexity-chart.png

Big O Notation

Example 1

We show that 𝑛" + 10𝑛 = 𝑂(𝑛"). Because, for 𝑛 ≥ 1,

𝑛" + 10𝑛 ≤ 𝑛" + 10𝑛" = 11𝑛",

we can take 𝑐 = 11 and 𝑛# = 1 to obtain our result.

¡ To show a function is in big O of another function, the key is to
find a specific value of 𝑐 and 𝑛# that make the inequality hold.

¡ More examples of functions in 𝑂(𝑛"):
¡ 𝑛!, 𝑛! + 𝑛, 𝑛! + 1000𝑛, 1000𝑛! + 1000𝑛, 𝑛, 𝑛/1000, 𝑛%.''''',
𝑛!/ lg lg lg 𝑛.

6

Classroom Exercise

Use the definition of Big O notation to show:

Is 2", = 𝑂(2,)?

7

Classroom Exercise

Proof:
We prove it by contradiction. Assume there exist constants 𝑐 > 0 and
𝑛! ≥ 0, such that

2"# ≤ 𝑐2#,
for all 𝑛 ≥ 𝑛!. Then

2"# = 2#2# ≤ 𝑐2#,
2# ≤ 𝑐.

But we can’t find any constant 𝑐 is greater than 2# for all 𝑛 ≥ 𝑛!. So
the assumption leads to a contradiction. Then we can certify that
2"# ≠ 𝑂(2#).
How about 2#$% = 𝑂(2#)?

8

Big Ω Notation

Definition 2.3

For a given complexity function 𝑔(𝑛), Ω 𝑔 𝑛 is the set of
complexity functions 𝑓 𝑛 for which there exists some positive
real constant 𝑐 and some nonnegative integer 𝑛# such that for all
𝑛 ≥ 𝑛#,

0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓 𝑛 .

¡ Ω 𝑔 𝑛 is the opposite of 𝑂 𝑔 𝑛 .

¡ If 𝑓 𝑛 = Ω 𝑔 𝑛 , it represents that 𝑓(𝑛) is an element in
Ω 𝑔 𝑛 . We say that 𝑓 𝑛 is “big Ω (大Ω)” of 𝑔 𝑛 .

9

Big Ω Notation

¡ No matter how small
𝑓 𝑛 is, it will
eventually be larger
than 𝑐𝑔 𝑛 for some
𝑐 and some 𝑛#.

¡ Big Ω notation
describes an lower
bound. We use it to
bound the best-case
running time of an
algorithm on
arbitrary inputs.

10

𝑓 𝑛 = Ω(𝑔(𝑛))

𝑐𝑔(𝑛)

𝑓(𝑛)

𝑛! 𝑛

Image source:图2.3,张德富, 算法设计与分析, 国防工业出版社, 2009.

Big Θ Notation

Definition 2.1

For a given complexity function 𝑔(𝑛), Θ 𝑔 𝑛 is the set of
complexity functions 𝑓 𝑛 for which there exists some positive
real constants 𝑐. and 𝑐" and some nonnegative integer 𝑛# such
that, for all 𝑛 ≥ 𝑛#,

0 ≤ 𝑐.𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐"𝑔(𝑛).

¡ If 𝑓 𝑛 = Θ 𝑔 𝑛 , we say that 𝑓 𝑛 is “big Θ (大Θ)” or has the
same order (数量级) of 𝑔 𝑛 .

¡ Θ 𝑔 𝑛 = 𝑂 𝑔 𝑛 ∩ Ω 𝑔 𝑛 .

11

Relation between Big O, Big Ω and Big Θ

¡ Now we have O, Θ, and Ω. Intuitively, they just like “≤”, “=”,
and “≥” for complexity functions.

12

Image source: Figure 1.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Big Θ Notation

13

𝑓 𝑛 = Θ(𝑔(𝑛))

𝑐"𝑔(𝑛)

𝑓(𝑛)

𝑛! 𝑛

𝑐#𝑔(𝑛)
¡ 𝑓 𝑛 = Θ 𝑔 𝑛 implies
𝑓 𝑛 = 𝑂 𝑔 𝑛 and
𝑓 𝑛 = Ω 𝑔 𝑛 .

¡ Big Θ can also be used to
bound the worst-case time
complexity.
¡ For insertion sort, the worst-
case is both Θ 𝑛! and
𝑂 𝑛! .

¡ However, we usually use
Big O notation because we
don’t care the best-case.

Image source:图2.1,张德富, 算法设计与分析, 国防工业出版社, 2009.

Properties of Asymptotic Notations

Theorem 2.1

For any two functions 𝑓(𝑛) and 𝑔(𝑛), 𝑓(𝑛) = Θ 𝑔 𝑛 if and
only if 𝑓(𝑛) = 𝑂 𝑔 𝑛 and 𝑓(𝑛) = Ω 𝑔 𝑛 .

¡ Θ = O and Ω.

Theorem 2.2

For any two functions 𝑓.(𝑛) and 𝑓"(𝑛), if 𝑓. 𝑛 = 𝑂 𝑔. 𝑛 and
𝑓" 𝑛 = 𝑂 𝑔" 𝑛 , we have 𝑓. 𝑛 + 𝑓" 𝑛 = 𝑂(

)
max {

}
𝑔. 𝑛 ,

𝑔" 𝑛 .

¡ Pick the larger one.

14

Properties of Asymptotic Notations

¡ Transitivity (传递性)
¡ If 𝑓 𝑛 = Θ 𝑔 𝑛 and 𝑔 𝑛 =
Θ ℎ 𝑛 then 𝑓 𝑛 = Θ ℎ 𝑛 .

¡ Same for O and Ω.

¡ Additivity (可加性)
¡ If 𝑓 𝑛 = Θ ℎ 𝑛 and 𝑔 𝑛 =
Θ ℎ 𝑛 then 𝑓 𝑛 + 𝑔(𝑛) =
Θ ℎ 𝑛 .

¡ Same for O and Ω.

¡ Reflexivity (自反性)
¡ If 𝑓 𝑛 = Θ 𝑓 𝑛 .

¡ Same for O and Ω.

¡ Symmetry (对称性)
¡ 𝑓 𝑛 = Θ 𝑔 𝑛 if and only if
𝑔 𝑛 = Θ 𝑓 𝑛 .

¡ Not hold for O and Ω.

15

Properties of Asymptotic Notations

¡ Consider the following ordering of complexity categories:
Θ lg 𝑛 Θ 𝑛 Θ 𝑛lg 𝑛 Θ 𝑛" Θ 𝑛& Θ 𝑛' Θ 𝑎# Θ 𝑏# Θ(𝑛!)
where 𝑘 ≥ 𝑗 ≥ 2 and 𝑏 ≥ 𝑎 ≥ 1.

¡ If 𝑓 𝑛 is to the left of 𝑔 𝑛 in the above sequence, then
𝑓 𝑛 = 𝑂 𝑔 𝑛

¡ Notice: Big Θ is a set of functions. We can’t say Θ lg 𝑛 < Θ 𝑛 .

16

Properties of Asymptotic Notations

Example 2

Given 𝑓 𝑛 = %
"
𝑛(𝑛 − 1), prove that 𝑓 𝑛 = Θ(𝑛")

Proof:

By the property, we first show that 𝑓 𝑛 = 𝑂(𝑛"):
%
"
𝑛 𝑛 − 1 = %

"
𝑛" − %

"
𝑛 ≤ %

"
𝑛" (for 𝑐 = %

"
and 𝑛! = 0).

Then we show that 𝑓 𝑛 = Ω 𝑛" :
%
"
𝑛 𝑛 − 1 = %

"
𝑛" − %

"
𝑛 ≥ %

"
𝑛" − %

"
𝑛 %
"
𝑛 = %

(
𝑛" (for 𝑐 = %

(
and 𝑛! = 2).

Thus 𝑓 𝑛 = Θ(𝑛").

17

Using Limit to Determine Order

¡ In addition to proving by definition, we can also use limit to get
asymptotic notations.

lim
,→1

𝑓(𝑛)
𝑔(𝑛)

= 𝑐 implies 𝑓 𝑛 = Θ 𝑔 𝑛 if 0 < 𝑐 < ∞
≠ ∞ implies 𝑓 𝑛 = 𝑂 𝑔 𝑛
≠ 0 implies 𝑓 𝑛 = Ω 𝑔 𝑛

18

Using a Limit to Determine Order

Example 3

Compare the orders of growth of ."𝑛(𝑛 − 1) and 𝑛".

lim
,→1

1
2𝑛(𝑛 − 1)

𝑛"
=
1
2
lim
,→1

𝑛" − 𝑛
𝑛"

=
1
2
lim
,→1

(1 −
1
𝑛
) =

1
2
,

Thus, ."𝑛 𝑛 − 1 = Θ(𝑛").

19

Classroom Exercise

Compare the orders of growth of 𝑎, and 𝑏,, when 𝑏 > 𝑎 > 0

20

Classroom Exercise

Solution:

lim
,→1

𝑎,

𝑏,
= lim

,→1

𝑎
𝑏

,
= 0.

The limit is 0 because 0 < 2
3 < 1. Thus, 𝑎, = 𝑂 𝑏, .

21

Using a Limit to Determine Order

¡ When calculating lim
,→1

4(,)
5(,), how to deal with the following

cases?
lim
,→1

𝑓(𝑛) = lim
,→1

𝑔(𝑛) = 0 or ±∞

22

Using a Limit to Determine Order

23

Image source: https://tieba.baidu.com/p/5933589166

https://tieba.baidu.com/p/5933589166

Using a Limit to Determine Order

L‘Hôpital’s Rule (洛必达法则)

If 𝑓(𝑥) and 𝑔(𝑥) are both differentiable with derivatives 𝑓′(𝑥)
and 𝑔′(𝑥), respectively, and if

lim
6→1

𝑓 𝑥 = lim
6→1

𝑔 𝑥 = 0 or ±∞,

then

lim
6→1

𝑓(𝑥)
𝑔(𝑥) = lim

6→1

𝑓′(𝑥)
𝑔′(𝑥) ,

whenever the limit on the right exists.

24

Using a Limit to Determine Order

Example 4
lg 𝑛 = 𝑂(𝑛)

because

lim
6→1

lg 𝑥
𝑥
= lim

6→1

𝑑(lg 𝑥)/𝑑𝑥
𝑑𝑥/𝑑𝑥

= lim
6→1

1/(𝑥 ln2)
1

= 0.

25

𝑑 log$ 𝑥
𝑑𝑥 =

1
𝑥 ln 𝑎

Exercises

Show the correctness of the following statements.

¡ lg 𝑛 = 𝑂 𝑛
¡ 𝑛 = 𝑂(𝑛 lg 𝑛)
¡ 𝑛 lg 𝑛 = 𝑂(𝑛")

¡ 2, = Ω(5?@ ,)
¡ lg! 𝑛 = 𝑂(𝑛#.B)

26

Conclusion

After this lecture, you should know:

¡ Why do we need asymptotic notation?

¡ What are the meaning of these asymptotic notations big O, big
Θ, or big Ω?

¡ How to prove a complexity function is big O, big Θ, or big Ω?

¡ How to compare the order of two complexity function?

27

Homework

¡ Page 19

2.1

2.2

2.3

2.9

28

谢谢

有问题欢迎随时跟我讨论

29

