算法设计与分析

Lecture 2: Asymptotic Notation

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

Asymptotic Notation

Intuitively, just look at the dominant term.

$$T(n) = 0.1n^3 + 10n^2 + 5n + 25$$

- Drop lower-order terms $10n^2 + 5n + 25$.
- Ignore constant 0.1.
- But we can't say that T(n) equals to n^3 .
 - It grows like n^3 . But it doesn't equal to n^3 .
- We define asymptotic notations (渐进符号) like $T(n) = \Theta(n^3)$ to describe the asymptotic running time of an algorithm.
 - "Asymptotic" here means "as something tends to infinity", as we want to compare algorithms for very large n.

Logarithm Review

Definition

 $\log_b a$ is the unique number c s.t. $b^c = a$.

Notations:

- $\lg n = \log_2 n$ (binary logarithm)
- $\ln n = \log_e n$ (natural logarithm)
- $\lg^k n = (\lg n)^k$ (exponentiation)
- $\lg \lg n = \lg(\lg n)$ (composition)
- Derivative:

 $\frac{d(\log_a x)}{dx} = \frac{1}{x \ln a}$

- Useful identities for all real a > 0, b > 0, c > 0, and n, and where logarithm bases are not 1:
 - $\log_c(ab) = \log_c a + \log_c b$
 - $\log_b a^n = n \log_b a$
 - $\log_b\left(\frac{1}{a}\right) = -\log_b a$
 - $\log_b a = (\log_a b)^{-1}$
 - $a^{\log_b c} = c^{\log_b a}$
 - $\log_b a = \frac{\log_c a}{\log_c b}$
 - $a = b^{\log_b a}$

Big O Notation

Definition 2.2

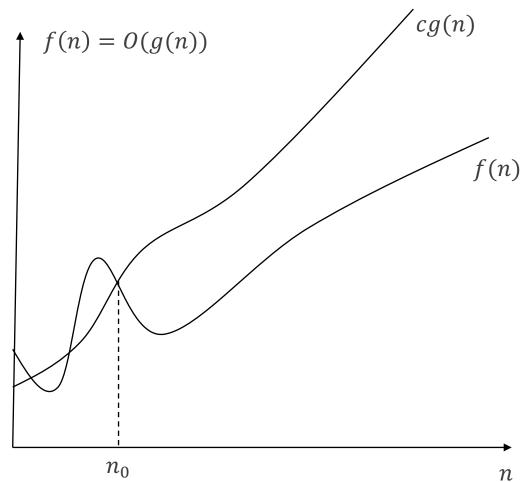
For a given complexity function g(n), O(g(n)) is the set of complexity functions f(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \ge n_0$,

 $0 \le f(n) \le cg(n).$

- O(g(n)) is a set of functions in terms of g(n) that satisfy the definition.
- If f(n) = O(g(n)), it represents that f(n) is an element in O(g(n)). We say that f(n) is "big O(tO)" of g(n).
 - Strictly, we should use "∈" instead of "=". However, it is conventional to use "=" for asymptotic notations.

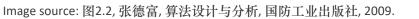
Big O Notation

- No matter how large f(n) is, it will eventually be smaller than cg(n) for some c and some n₀.
- Big O notation describes an upper bound. We use it to bound the worstcase running time of an algorithm on arbitrary inputs.



amouter Science Department of Xiamen Universit

4



Display of Growth of Functions

Big-O Complexity Chart

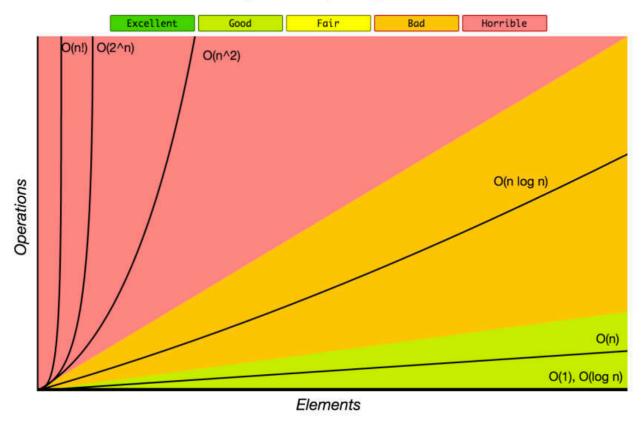


Image source: http://bigocheatsheet.com/img/big-o-complexity-chart.png

Big O Notation

Example 1

We show that $n^2 + 10n = O(n^2)$. Because, for $n \ge 1$,

$$n^2 + 10n \le n^2 + 10n^2 = 11n^2,$$

we can take c = 11 and $n_0 = 1$ to obtain our result.

- To show a function is in big O of another function, the key is to find a specific value of c and n₀ that make the inequality hold.
- More examples of functions in $O(n^2)$:
 - n^2 , $n^2 + n$, $n^2 + 1000n$, $1000n^2 + 1000n$, n, n/1000, $n^{1.99999}$, $n^2/\lg \lg \lg n$.

Classroom Exercise

Use the definition of Big *O* notation to show:

Is
$$2^{2n} = O(2^n)$$
?

Classroom Exercise

Proof:

We prove it by contradiction. Assume there exist constants c > 0 and $n_0 \ge 0$, such that

$$2^{2n} \le c 2^n,$$

for all $n \ge n_0$. Then

$$2^{2n} = 2^n 2^n \le c 2^n,$$
$$2^n \le c.$$

But we can't find any constant c is greater than 2^n for all $n \ge n_0$. So the assumption leads to a contradiction. Then we can certify that $2^{2n} \ne O(2^n)$.

How about $2^{n+1} = O(2^n)$?

Big Ω Notation

Definition 2.3

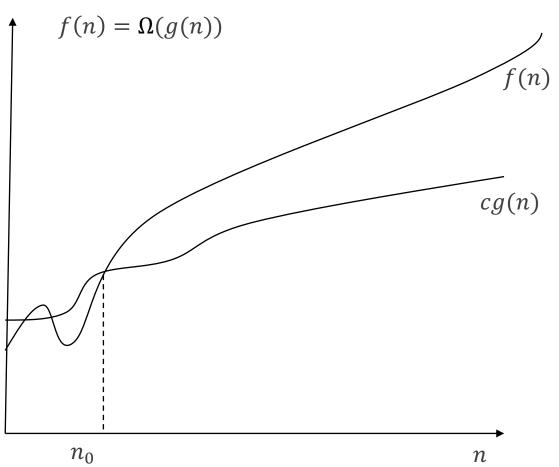
For a given complexity function g(n), $\Omega(g(n))$ is the set of complexity functions f(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \ge n_0$,

 $0 \le cg(n) \le f(n).$

- $\Omega(g(n))$ is the opposite of O(g(n)).
- If $f(n) = \Omega(g(n))$, it represents that f(n) is an element in $\Omega(g(n))$. We say that f(n) is "big Ω (大 Ω)" of g(n).

Big Ω Notation

- No matter how small f(n) is, it will eventually be larger than cg(n) for some c and some n₀.
- Big Ω notation describes an lower bound. We use it to bound the best-case running time of an algorithm on arbitrary inputs.



Big Θ Notation

Definition 2.1

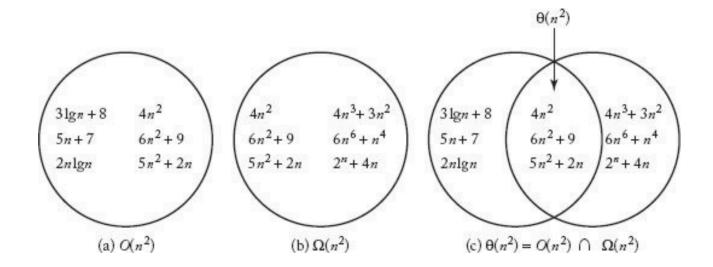
For a given complexity function g(n), $\Theta(g(n))$ is the set of complexity functions f(n) for which there exists some positive real constants c_1 and c_2 and some nonnegative integer n_0 such that, for all $n \ge n_0$,

$0 \le c_1 g(n) \le f(n) \le c_2 g(n).$

• If $f(n) = \Theta(g(n))$, we say that f(n) is "big Θ (大 Θ)" or has the same order (数量级) of g(n).

•
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$$

Relation between Big O, Big Ω and Big Θ



Now we have O, Θ , and Ω . Intuitively, they just like " \leq ", "=", and " \geq " for complexity functions.

Image source: Figure 1.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Big Θ Notation

- $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)) and $f(n) = \Omega(g(n)).$
- Big
 ^O can also be used to bound the worst-case time complexity.
 - For insertion sort, the worstcase is both $\Theta(n^2)$ and $O(n^2)$.
- However, we usually use Big O notation because we don't care the best-case.

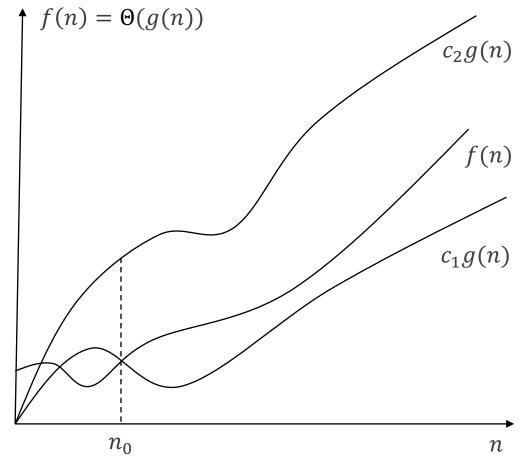


Image source: 图2.1, 张德富, 算法设计与分析, 国防工业出版社, 2009.

Theorem 2.1

For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

• $\Theta = 0$ and Ω .

Theorem 2.2

For any two functions $f_1(n)$ and $f_2(n)$, if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, we have $f_1(n) + f_2(n) = O(\max \{g_1(n), g_2(n)\})$.

Pick the larger one.

- Transitivity (传递性)
 - If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$.
 - Same for O and Ω.
- Additivity (可加性)
 - If $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n))$ then $f(n) + g(n) = \Theta(h(n))$.
 - Same for O and Ω.

- Reflexivity (自反性)
 - If $f(n) = \Theta(f(n))$.
 - Same for O and Ω .
- Symmetry (对称性)
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
 - Not hold for O and Ω.

- Consider the following ordering of complexity categories: $\Theta(\lg n) \ \Theta(n) \ \Theta(n\lg n) \ \Theta(n^2) \ \Theta(n^j) \ \Theta(n^k) \ \Theta(a^n) \ \Theta(b^n) \ \Theta(n!)$ where $k \ge j \ge 2$ and $b \ge a \ge 1$.
- If f(n) is to the left of g(n) in the above sequence, then f(n) = O(g(n))
- Notice: Big Θ is a set of functions. We can't say $\Theta(\lg n) < \Theta(n)$.

Example 2

Given
$$f(n) = \frac{1}{2}n(n-1)$$
, prove that $f(n) = \Theta(n^2)$
Proof:

By the property, we first show that $f(n) = O(n^2)$:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 (for $c = \frac{1}{2}$ and $n_0 = 0$).

Then we show that $f(n) = \Omega(n^2)$:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n = \frac{1}{4}n^2 \text{ (for } c = \frac{1}{4} \text{ and } n_0 = 2\text{)}.$$

Thus $f(n) = \Theta(n^2).$

In addition to proving by definition, we can also use limit to get asymptotic notations.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{cases} = c & \text{implies } f(n) = \Theta(g(n)) & \text{if } 0 < c < \infty \\ \neq \infty & \text{implies } f(n) = O(g(n)) \\ \neq 0 & \text{implies } f(n) = \Omega(g(n)) \end{cases}$$

Example 3

Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 .

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2}\lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2}\lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2},$$

Thus, $\frac{1}{2}n(n-1) = \Theta(n^2).$

Classroom Exercise

Compare the orders of growth of a^n and b^n , when b > a > 0

Classroom Exercise

Solution:

$$\lim_{n\to\infty}\frac{a^n}{b^n} = \lim_{n\to\infty}\left(\frac{a}{b}\right)^n = 0.$$

The limit is 0 because $0 < \frac{a}{b} < 1$. Thus, $a^n = O(b^n)$.

• When calculating
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
, how to deal with the following cases?

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = 0 \text{ or } \pm \infty$$

Image source: https://tieba.baidu.com/p/5933589166

L'Hôpital's Rule (洛必达法则)

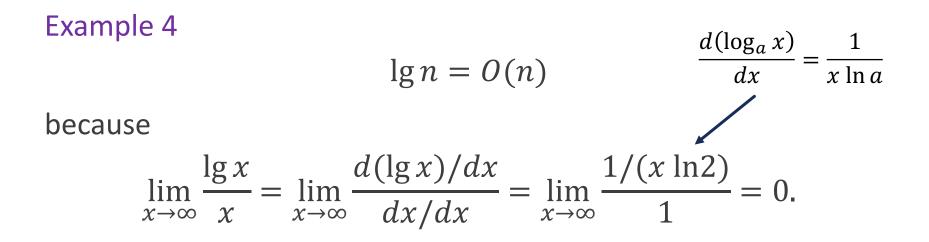
If f(x) and g(x) are both differentiable with derivatives f'(x)and g'(x), respectively, and if

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0 \text{ or } \pm \infty,$$

then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)},$$

whenever the limit on the right exists.



Exercises

Show the correctness of the following statements.

- $\bullet \lg n = O(n)$
- $\bullet n = O(n \lg n)$
- $\bullet n \lg n = O(n^2)$
- $\bullet 2^n = \Omega(5^{\ln n})$
- $\lg^3 n = O(n^{0.5})$

Conclusion

After this lecture, you should know:

- Why do we need asymptotic notation?
- What are the meaning of these asymptotic notations big O, big Θ , or big Ω ?
- How to prove a complexity function is big O, big Θ , or big Ω ?
- How to compare the order of two complexity function?

Homework

Page 19

2.1

2.2

2.3

2.9

有问题欢迎随时跟我讨论

